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ABSTRACT

A computer program has been worked out to evaluate the activation energy, the
Arrhenius pre-exponential factor and the mechanism of solid-state reactions from
non-isothermal measurements. A univocal determination of the reaction mechanism
is obtained by the simultaneous application of two sclection crileria: (a) activation
energy value by the Ozawa mcthod; (b) degree of lincarity in the Satava method.

A modification of the Rogers and Smith method was then used to obtain
empirically complete agreement between kinetic expression and experimental results
when the kinetic law has to be improved to account for a whole experimental curve.

The accuracy of the computer method has been checked through a calibration
of the program by means of 16 theoretical functions proposed by Sestik.

INTRODUCTION

The problem of deriving kinetic parameters from curves obtained under non-
isothermal conditions has been faced by many authors and some of them transposed
their method into computer programs: while a complete review can be found in
ref. 1, a successive work by Skvira and Sestik? pointed out the difficulty to obtain
a univocal determination of the kinetic parameters by such treatments.

Various laws can be reasonably proposed to describe the mechanism of reactions
in solids. The problem lies in choosing the most suitable of them for cach experimental
case studied. The criteria of such a choice must be the most general and, at the same
time, sufficiently restrictive to discriminate not arbitrarily among different sets of
parameters.

Skvara and Sestik proposed 3 criteria for choice:

(a) the interval of linearity in the plot of the integral function g(z) vs. 1/T, «
being the transformed fraction of reagent at temperature 7 (Satava method?);

(o) the minimum value of the standard deviation in the considered interval of z;

(c) the value of the pre-exponential factor of the Arrhenius law, Z, which must
lic between 10* and 10?4 sec™?.
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Such a procedure, however, does not enable one to distinguish among Jifferent
nucleation mechanisms?®.

A preliminar evaluation of activation energy, £, by the Kissinger*- * and
Ozawa® methods has been recently suggested to overcome this difficulty®- 7. Botn
methods, in fact, when applied to recrystallization of copper, gave E and Z in good
agreement with the isothermal data.

A prosecution of this work has been undertaken by transferring the method into
a computer program to favour the choice among very similar mechanisms.

METHOD

Several analytical methods from the literature are applied to DSC peaks step
by step, while rejecting the mechanisms unsuitable to account for the experimental
thermograms or yielding erroneous parameters.

First of all, an analysis of the peak shifts as a function of the heating rate @ is
carried out. The T, temperature of the maximum of the peaks and 7, temperature at
consiant 2 transformmed fraction are employed to obtain respectively the plots by
Kissinger (In®/T2 vs. 1jT,;) and Ozawa (log ¢ vs. /7). The activation energy is then
obtained from the slope of these straight lines, without making any hypothesis as to
the mechanism acting in the process examined. These methods are quite general for
reactions occurring through a single mechanism at 7, or z transfonned fraction® and
avoid the risk of achieving false kinetic parameters as occurs with methods based on
more restrictive assumptions®.

Then, single peak analysis by the Satava method is undertaken and the energies
obtained from different g(x) functions are compared with the values previously
determined from Kissinger and Ozawa plots.

The 2(x) function is defined as in ref. 3

dx ZE E
83 = | iy~ k& PP ¥ = kT
o

being, as in ref. 1,
f(x)=2"(1 =) [—-In(l — )}

The agreement of the cnergy values from all the methods is the pnncipal
criterium of selection amcng various mechanisms which has been adopted to climinate
the uncertainties expressed by Skvira and Sestak?. Their discriminating criterium,
degree of linearity in the Satava plot, is then applied to make a choice among kinetic
laws giving acceptable E values.

In practical cases®- ©- %, the plot of log g(z) vs. 1/T for the best iategral function
may have a degree of linearity well below 90-100%,. Such a theoretical g(a), therefore,
does not account for the whole progress of the process investigated. In order to make
up for this misfit an empirical f(z) fenction is taken into consideration, the » exponent
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Hypothesis of the general kinetic equation :—;’:IK(T)- fle)=2eo

-'% " (1-a)"[h (1-ar

Ozawa method
og® vs. Vg,

Satava method

log afc)vs 1/,
Y
Mechanism type,E,2 I

+

(-¢) ab _ [m(1-q),
¥ dt [

Moditied Rogers - Smith method
p vs (19
Ax Afn (1-c)]] bT?

4

LEnpirical f(a} J

!

Modified Borchardt - Daniels method
b/A - 1
) v /r

Fig. 1. Scheme to determine kinctic parameters and law followed in the computer program.
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of whizh 1s drawn from the Rogers and Smith method modified by Lucci and Tama-
nini® through the expression:

— - m—  —— [ S —— —-

ar Ar Al —a) Al —-2[-In(l-a)] RT® b.

where b is the distance of the DSC curve from the baseline and A the total subtended
area.

db _ .. m n p ., ©FE l]

Following Sestak!, m and p in the above formula are alternatively sct to zero;
the non-null exponent is given the value obtained by differentiating the known g(z);

E and n are deduced from the slope and the intercept at the origin of the straight line
in the plot of

({-2) db |m(l—-—2) P ]

b*  di Az A[-In(l — 3)]

against (! — z)/b- 7. Z is computed by starting from the condition db/dr — 0 at the
maximum of the pcak®. Agreement of £ with the previously obtained values and a low
standard deviation permit to accept the empirical kinetic law. Finally, as a test of
validity of the new f(x), the approximated modified Borchardt-Daniels formula®

b E
f——— i — ..+ InZ
In T+ "
is applizd to re-evalvate Fand Z. Figure ! represents the exposed method schematical-
ly.

PROGRAM

The program is written in FORTRAN 1V language.

Input data are the following: the @ heating rates and the 7, temperatures at
which 2 maximum occurs for each corresponding peak, the nuinber of peaks to be
examined and, for each of them, the N fiumber of experimental points, their & scanning
interval, the initial temperature, the b deflections from the baseline.

A standard least-square technique 1s used to compute slopes and intercepts of
all plots.

The x transformed fractions are computed from the beginning of the peak for
every successive temperature siep by using the Simpson integration method. The
transformed fraction at the maximum of the peak is computed too, as a control of its
constant value.

The Satava method is applied to a set of 16 kinetic equations irvolving theoreti-
cal g(z) functions which represent reaction mechanisms in the solid state®. These are
listed in Table 1 together with the corresponding f(z) function derived by Sestak!°.

The simple linear Doyle approximation®- ®, sufficiently good in the range 20 <
x < 60, which covers a large number of experimental cases, is used for p(x) function.

The interval of linearity of the plot of log g(z) vs. 1/T expressed in per cent of the
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KINETIC FUNCTIONS
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8f{=) f(a) Symbol  Type

as a-l D1 Diflusien
(I1—aln(l —a) 5 a [— In(l — a)]! D2

1 —a — a)=p (1 —a)'Bi—In(l —a)l-'* D3

(d—23a) + (1 — a)*¥3 {-In(l —a)l-1=» D4

1 —(1 —a)f (1 - oyt B1 Phase boundary reaction
1—(1 —a)R (1 — a)? B2

[— In{1l — a)] (01—a) NI Nucleation
[— In(1 — o) (1 - a){— In(i — Q) N2

[-- In(1 — a)}* (1 — a)-- In(l -- OF N3

f-- In(1 -- Q)]'S? (1t --ef - In(l -- a))*3 N4

[— la(t — a)]v (1 — a)l— In(1 — a)Pi4 NS

al/t a3l Pl Power law
a3 a*n P2

a? at P3

a 1. P4

a3® c* P5

3 According to Sestdk 10

censidered range (namely 0.0l < o < 0.99), is determined by rejecting one by one in
successive iterations the points which depart from the straight line by more than a
certain value of accuracy, established in advance (usually, when examining experimen-
tal data, accuracy is set® to 10%).

The derivatives, db/dt, at temperature 7, are evaluated by means of an approxi-
mated numerical formula, derived from definite difference interpolation formulae
and similar to the one proposed by Sestak!:

db 1_ [.t.’i'..‘!_.—_ l_,.‘._" +

bizn—2biy +2b_y— b_3,
T2k

12

dr " h

3 by —4b,a, + Sbsy — 5b_, + 4b_», — b—_u]
240

where the subscripis refer to points at a -*- n & distance from 7.

Every part of the program prints out the values of the kinetic parameters and the
siandard deviation with respect to the least-square straight line. Supplementary
prints give the transformed fractions and the derivatives.

CHECK OF THE PROGRAM—RESULTS AND DISCUSSION

The program has been tested by sets of theoretical data calculated according to
the functions listed in Table 1 together with symbols for every function, which will be
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used in the following, and by setting arbitrary values for £ and Z in the Arrhenius
law. In this way, a calibration of the program has been obtained both to test the
achievable accuracy in the parameter evaluation and to verify if a2 number of functions
could vield results so close as to show the insufficiency of the proposed criteria of
choice.

The temperatures corresponding to half the transformed fractions have been
computed for six heating rates from 5.5 to 70°C min "' to be used in the Kissinger
and Ozawa plots. In single peak analysis, 25-30 points per curve had to be computed
to achieve a good evaluation of the parameters. In fact, a high number of points,
corresponding to a narrow scanning interval, enables onc to obtain a better approxi-
mation of the transformed fractions and the derivatives owing to the use of numerical
formulae. The beginning and the end of the peaks have been taken when z was not
higher than 0.001 and not lower than 0.999, respectively.

The theoretical activation energy values and those computed according to
Kissinger and Ozawa are r=ported in Table 2. As clearly appears, the Ozawa method
permits a particularly good reproduction of the thecretical data, whereas the Kissinger
method leads to slightly underestimated results for E. The same applies to Z which has
been computed after choice of the mechanism. The knowledge of the activation energy
from this treatment represents the starting point to cirry on the mechanism analysis
from the feature of the peaks.

Results found by the application of the Satava method are reported in Table 3
for some of the functions used with particular reference 1o those cases in which the
choice of the reaction mechanism could not be made on the basis of the Skvira-Sestak
critzria. In previous treatments the greatest doubts arise when considering nucleation
and power laws. In these cases, the theoretical data are fitted by more than one
kieetic equation of the same family (leading to different slopes of the straight line)

TABLE 2

THEORETICAL PARAMETERS AND RESULTS FROM APPLICATION OF Kissinger AND Ozawa METHODS

Function Ee log Z.» Es log Zs Fx log 7x
tested

Dla 18 9 17.99 899 17.52 8.62
DIlb 40 10 3991 997 39.19 9.65
Bl 40 13 39.84 1294 39.63 12.84
B2 30 10 39.87 9.96 39.19 9.70
N2a 40 10 3991 998 39.10 9.67
N2Db 33 13 3298 13.00 32.74 12.87
N3 40 10 3991 9.97 39.09 9.66
NS 40 10 539.99 10.00 39.15 968
NS 40 10 3993 098 39.09 9.66
3 40 10 39.97 999 39.14 9.68
P4 40 10 3997 999 39.18 9.69
Ps 40 10 3993 998 39.19 9.69
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within accuracy limits that can be fixed when experimental data are examined: no
remarkable difference is found in the degree of linearity while the standard deviations
and Z are equally acceplable.

Table 3 shows in fact that when N2, N3, N4 functions are tested all the nuclea-
tion laws (excepted N1 for N4) can be considerea possible. Analogously P3 data are
also fitted by P1, P2; P4 data by P3, P5 and P5 data by P3, P4.

Therefore, only previous knowledge of the activation encrgy allows the choice
of the correct kinetic function in all these examples.

Sometimes, more functions than the expected one lead to energies near the real
one: for instance D2, D3, D4 in the DI case; P3 in the N3 case: Bl, N2, N1 in the P4
case. The lower degree of linearity, however, helps in rejecting these functions. The
deviations from the real values of £ and Z used to build up the theoretical peaks may
be attributed to the influence of the truncation of the peak tails on evaluation of the
transformed fractions. In conclusicn, it is always possible to select the foresecn
mechanism univocally by applying both the conditions of E and the degree of linearity.

As already said, the modified Rogers and Smith method can furnish the n
exponent of an empirical i(z) function able to account for phenomena which cannot
be completely framed in one of the kinetic laws reported in Table 1. The present tests
of the program are performed, on the contrary, on theoretically computed data,
obviously giving an almost complete linearity for the proper function. In this case, the
check of the Rogers and Smith method is expected to exactly reproduce the theoretical
f(z) function: this is in fact verified and the resulits are reported in Table 4. Activation
energies and pre-exponential factors reasonably agree with those previously calculated.

TABLE 4

RESULTS EROM APPLICATION OF Rogers Smith anp Berchardt -Daniels sarrsons

Funcrion Furnction 1ype R Eus ZRrs nas Enn ZBD
rested checked by

Rogers-Smith

method
Dila D1 0 18.70 9.38 —-0.04 18.62 8.98
DI b D1 0 40.90 10.13 0.07 40.64 998
Bl Bl 112 4002 13.38 0.55 43.76 14.76

B2-NI-P4 2/310 40.02 13.38 0.55 4376 14.76
32 B2 2i3 4$0.51 10.77 0.74 39.82 10.40

BI-N1-P4 1,2-1.0 $0.51 10.77 0.74 3582 10.50
N2a N2 1 $0.27 10.38 1.06 39.15 9.89
N2b N2 1 34.15 13.81 1.11 32.76 13.08
N3 N3 1 4229 11.07 1.09 3942 10.09

P3 0 42,41 11.11 0.87 39.56 10.13
N4 N4 i 4267 11.69 1.12 38.53 10.01

P2 (1) 4282 11.74 0383 38.72 10.06
P1 P4 0 40.60 11.79 0.02 30.14 10.01
PS5 Ps (] 40.43 10.34 0.02 40.79 10.04
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Some scatter can be ascribed to the errors introduced by the numerical computation
of the derivatives of the DSC curves. The effect of this approximation on the empirical
f(2) arc shown by the standard deviation of 0.08 of the # parameter whick indicates
the limits within which it can be determined.

An interesting aspect of the present treatment concerns the checking of functions
which do not correspond with the theoretical one and give a lower degree of linearity
in the Satava plot. If such functions are passed to the successive step of the program
to get a better empirical fitting by the modified Rogers and Smith method, this latter
changes the E and n values deduced from the Satava plot and makes them converge
on the correct values. Table 4 shows some examples of this kind. Theoretical data
obtained by means of the Bl function lead to E = 35.78 kcal mol ~* and 66 % linearity
in the Satava plot for the P4 function (Table 3): the next calculation of E and »,
being m == p = 0, gives E == 40.02 kcal mol~ ! and the modified exponent n — 0.55.
N1 and B2 functions, showing a worse linearity. converge to the same results, too.
Similarly, the analysis of a peak built up according to B2, the integral form cf which
is 67% fitted by Bl with £ = 41.54, 41 % by P4 with £ —= 40.92 kcal mol " and 49%
by NI with E — 43.52 kcal mol™!, leads in all cases to E = 40.51 kcal mol™! and
n — 0.74.

An analogous convergence may be observed in a very recent work by Chen and
Fong'!, who simultaneously compute all the parameters by means of least squares.
In fact by treating data relative to the dehydration of gypsum with the hypothesis of
a (I — )" mechanism, they found E — 26.8 kcal mol "' and n = 0.998 and with a
o=. (1 — z)" mechanism E — 29.2 kcal mol™%, # = 1.033 and /n -- 0.085. Thesc
results should be considered equivalent. It is therefore questionable if it is possible to
distinguish among mechanisms of the N or P type by this method, when experimental
data, affected by usual errors, are run.

The aptitude of the Roger and Smith method to empirically increase the
linearity of the Satava plot results from the following examples. When theoretical
input data of 2 (I — ). [—In(1 — 2)]” N typc function are run for a =¥ P type law
with m — p, the Satava plot is fitted by 35409 and E, Z values are almost the correct
ones (see for instance N3-P3 and N4--P2 cases in Table 3). The following Rogers and
Smith treatment (Table 4), while improving Arrhenius parameters, recognizes the
necessity of introducing the (I — «)* function and finds » not far from 1 (0.87 and
0.83 for the mentioned cases).

The final step of the program (modified Borchardt and Daniels expression)
controls the accuracy of the empirical formu:a obtained before. Egy, and Zy, para-
meters reported in Table 4 are found in sufficient agreement with the preceding
evaluation.
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